"

Thermodynamics

109 The First Law of Thermodynamics and Some Simple Processes

Learning Objectives

  • Describe the processes of a simple heat engine.
  • Explain the differences among the simple thermodynamic processes—isobaric, isochoric, isothermal, and adiabatic.
  • Calculate total work done in a cyclical thermodynamic process.

 

An old photo of a steam turbine at a turbine production plant. People are shown working on the turbine.
Figure 109.1: Beginning with the Industrial Revolution, humans have harnessed power through the use of the first law of thermodynamics, before we even understood it completely. This photo, of a steam engine at the Turbinia Works, dates from 1911, a mere 61 years after the first explicit statement of the first law of thermodynamics by Rudolph Clausius. (credit: public domain; author unknown)

One of the most important things we can do with heat transfer is to use it to do work for us. Such a device is called a heat engine. Car engines and steam turbines that generate electricity are examples of heat engines. Figure 109.2 shows schematically how the first law of thermodynamics applies to the typical heat engine.

The figure shows a schematic representation of a heat engine. The heat engine is represented by a circle. The heat entering the system is shown as Q sub in, represented as a bold arrow toward the circle, and the heat coming out of the heat engine is shown as Q sub out, represented by a narrower bold arrow leaving the circle. The work labeled as W is shown to leave the heat engine as represented by another bold arrow leaving the circle. At the center of the circle are two equations. First, the change in internal energy of the system, delta U, equals zero. Consequently, W equals Q sub in minus Q sub out.
Figure 109.2 Schematic representation of a heat engine, governed, of course, by the first law of thermodynamics. It is impossible to devise a system where Qout=0, that is, in which no heat transfer occurs to the environment.
Figure a shows a piston attached to a movable cylinder which is attached to the right of another gas filled cylinder. The heat Q sub in is shown to be transferred to the gas in the cylinder as shown by a bold arrow toward it. The force of the gas on the moving cylinder with the piston is shown as F equals P times A shown as a vector arrow pointing toward the right. The change in internal energy is marked in the diagram as delta U sub a equals Q sub in. Figure b shows a piston attached to a movable cylinder which is attached to the right of another gas filled cylinder. The force of the gas has moved the cylinder with the piston by a distance d toward the right. The change in internal energy is marked in the diagram as delta U sub b equals negative W sub out. The piston is shown to have done work by change in position, marked as F d equal to W sub out. Figure c shows a piston attached to a movable cylinder which is attached to the right of another gas filled cylinder. The piston attached to the cylinder is shown to reach back to the initial position shown in figure a. The distance d is traveled back and heat Q sub out is shown to leave the system as represented by an outward arrow. The force driving backward is shown as a vector arrow pointing to the left, labeled F prime. F prime is shown less than F. The work done by the force F prime is shown by the equation W sub in equal to F prime times d.
Figure 109.3 (a) Heat transfer to the gas in a cylinder increases the internal energy of the gas, creating higher pressure and temperature. (b) The force exerted on the movable cylinder does work as the gas expands. Gas pressure and temperature decrease when it expands, indicating that the gas’s internal energy has been decreased by doing work. (c) Heat transfer to the environment further reduces pressure in the gas so that the piston can be more easily returned to its starting position.

The illustrations above show one of the ways in which heat transfer does work. Fuel combustion produces heat transfer to a gas in a cylinder, increasing the pressure of the gas and thereby the force it exerts on a movable piston. The gas does work on the outside world, as this force moves the piston through some distance. Heat transfer to the gas cylinder results in work being done. To repeat this process, the piston needs to be returned to its starting point. Heat transfer now occurs from the gas to the surroundings so that its pressure decreases, and a force is exerted by the surroundings to push the piston back through some distance. Variations of this process are employed daily in hundreds of millions of heat engines. We will examine heat engines in detail in the next section. In this section, we consider some of the simpler underlying processes on which heat engines are based.

Example 109.1 Total Work Done in a Cyclical Process Equals the Area Inside the Closed Loop on a PV Diagram

Calculate the total work done in the cyclical process ABCDA shown in Figure 109.7  by the following two methods to verify that work equals the area inside the closed loop on the PV diagram. (Take the data in the figure to be precise to three significant figures.) (a) Calculate the work done along each segment of the path and add these values to get the total work. (b) Calculate the area inside the rectangle ABCDA.

Strategy

To find the work along any path on a PV diagram, you use the fact that work is pressure times change in volume, or W=PΔV. So in part (a), this value is calculated for each leg of the path around the closed loop.

Solution for (a)

The work along path AB is

WAB=PABΔVAB=(1.50×106N/m2)(5.00×104m3)=750J.

Since the path BC is isochoric, ΔVBC=0, and so WBC=0. The work along path CD is negative, since ΔVCD is negative (the volume decreases). The work is

WCD=PCDΔVCD=(2.00×105N/m2)(5.00×104m3)=100J.

Again, since the path DA is isochoric, ΔVDA=0, and so WDA=0. Now the total work is

W=WAB+WBC+WCD+WDA=750 J+0+(100J)+0=650 J.

Solution for (b)

The area inside the rectangle is its height times its width, or

area=(PABPCD)ΔV=[(1.50×106N/m2)(2.00×105N/m2)](5.00×104m3)=650 J.

Thus,

area=650J=W.

Discussion

The result, as anticipated, is that the area inside the closed loop equals the work done. The area is often easier to calculate than is the work done along each path. It is also convenient to visualize the area inside different curves on PV diagrams in order to see which processes might produce the most work. Recall that work can be done to the system, or by the system, depending on the sign of W. A positive W is work that is done by the system on the outside environment; a negative W represents work done by the environment on the system.

Figure 109.8(a) shows two other important processes on a PV diagram. For comparison, both are shown starting from the same point A. The upper curve ending at point B is an isothermal process—that is, one in which temperature is kept constant. If the gas behaves like an ideal gas, as is often the case, and if no phase change occurs, then PV=nRT. Since T is constant, PV is a constant for an isothermal process. We ordinarily expect the temperature of a gas to decrease as it expands, and so we correctly suspect that heat transfer must occur from the surroundings to the gas to keep the temperature constant during an isothermal expansion. To show this more rigorously for the special case of a monatomic ideal gas, we note that the average kinetic energy of an atom in such a gas is given by

12mv2=32kT.

The kinetic energy of the atoms in a monatomic ideal gas is its only form of internal energy, and so its total internal energy U is

U=N12mv2=32NkT, (monatomic ideal gas),

where N is the number of atoms in the gas. This relationship means that the internal energy of an ideal monatomic gas is constant during an isothermal process—that is, ΔU=0. If the internal energy does not change, then the net heat transfer into the gas must equal the net work done by the gas. That is, because ΔU=QW=0 here, Q=W. We must have just enough heat transfer to replace the work done. An isothermal process is inherently slow, because heat transfer occurs continuously to keep the gas temperature constant at all times and must be allowed to spread through the gas so that there are no hot or cold regions.

Also shown in Figure 109.8(a) is a curve AC for an adiabatic process, defined to be one in which there is no heat transfer—that is, Q=0. Processes that are nearly adiabatic can be achieved either by using very effective insulation or by performing the process so fast that there is little time for heat transfer. Temperature must decrease during an adiabatic process, since work is done at the expense of internal energy:

U=32NkT.

(You might have noted that a gas released into atmospheric pressure from a pressurized cylinder is substantially colder than the gas in the cylinder.) In fact, because Q=0,ΔU=W for an adiabatic process. Lower temperature results in lower pressure along the way, so that curve AC is lower than curve AB, and less work is done. If the path ABCA could be followed by cooling the gas from B to C at constant volume (isochorically), Figure 109.8(b), there would be a net work output.

Part a of the figure shows a graph for pressure versus volume. The pressure is along the y axis and the volume is along the x axis. There are two curves. The first curve begins at point A and falls smoothly downward to point B. The graph is shown for an isothermal process. The second curve also begins at point A but falls below the first curve and ends at point C vertically below point B. This graph is shown for an adiabatic process. A line joins point B and C to meet on the X axis. Also a line is drawn from point A to meet the X axis. The area under both the curves is shaded. The graph in figure b is similar to the graph in figure a. Only the directions of the curves are changed. The graph begins from A and moves downward to point B. Then from point B the curve drops vertically downward to C. From point C the graph has a smooth rise back to point A. All directions represented using arrows.
Figure 109.8 (a) The upper curve is an isothermal process (ΔT=0), whereas the lower curve is an adiabatic process (Q=0). Both start from the same point A, but the isothermal process does more work than the adiabatic because heat transfer into the gas takes place to keep its temperature constant. This keeps the pressure higher all along the isothermal path than along the adiabatic path, producing more work. The adiabatic path thus ends up with a lower pressure and temperature at point C, even though the final volume is the same as for the isothermal process. (b) The cycle ABCA produces a net work output.

PhET Explorations: States of Matter

Watch different types of molecules form a solid, liquid, or gas. Add or remove heat and watch the phase change. Change the temperature or volume of a container and see a pressure-temperature diagram respond in real time. Relate the interaction potential to the forces between molecules.

Glossary

heat engine
a machine that uses heat transfer to do work
isobaric process
constant-pressure process in which a gas does work
isochoric process
a constant-volume process
isothermal process
a constant-temperature process
adiabatic process
a process in which no heat transfer takes place
reversible process
a process in which both the heat engine system and the external environment theoretically can be returned to their original states

License

Icon for the Creative Commons Attribution 4.0 International License

College Physics 1 Copyright © 2012 by OSCRiceUniversity is licensed under a Creative Commons Attribution 4.0 International License, except where otherwise noted.